0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 IDP
↳17 IDPNonInfProof (⇐)
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i76[0] >= 0 && i12[0] >= i76[0] && i12[0] < i35[0] && i76[0] + 1 > 0 →* TRUE)∧(i76[0] →* i76[1])∧(i12[0] →* i12[1])∧(i35[0] →* i35[1]))
(1) -> (0), if ((i35[1] →* i35[0])∧(i12[1] →* i12[0])∧(i76[1] + 1 →* i76[0]))
(1) -> (2), if ((i12[1] →* i12[2])∧(i35[1] →* i35[2])∧(i76[1] + 1 →* i76[2]))
(2) -> (3), if ((i35[2] →* i35[3])∧(i12[2] >= 0 && i12[2] < i76[2] && i12[2] < i35[2] && i12[2] + 1 > 0 →* TRUE)∧(i76[2] →* i76[3])∧(i12[2] →* i12[3]))
(3) -> (0), if ((i35[3] →* i35[0])∧(i76[3] →* i76[0])∧(i12[3] + 1 →* i12[0]))
(3) -> (2), if ((i35[3] →* i35[2])∧(i76[3] →* i76[2])∧(i12[3] + 1 →* i12[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i76[0] >= 0 && i12[0] >= i76[0] && i12[0] < i35[0] && i76[0] + 1 > 0 →* TRUE)∧(i76[0] →* i76[1])∧(i12[0] →* i12[1])∧(i35[0] →* i35[1]))
(1) -> (0), if ((i35[1] →* i35[0])∧(i12[1] →* i12[0])∧(i76[1] + 1 →* i76[0]))
(1) -> (2), if ((i12[1] →* i12[2])∧(i35[1] →* i35[2])∧(i76[1] + 1 →* i76[2]))
(2) -> (3), if ((i35[2] →* i35[3])∧(i12[2] >= 0 && i12[2] < i76[2] && i12[2] < i35[2] && i12[2] + 1 > 0 →* TRUE)∧(i76[2] →* i76[3])∧(i12[2] →* i12[3]))
(3) -> (0), if ((i35[3] →* i35[0])∧(i76[3] →* i76[0])∧(i12[3] + 1 →* i12[0]))
(3) -> (2), if ((i35[3] →* i35[2])∧(i76[3] →* i76[2])∧(i12[3] + 1 →* i12[2]))
(1) (&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0))=TRUE∧i76[0]=i76[1]∧i12[0]=i12[1]∧i35[0]=i35[1] ⇒ LOAD875(i12[0], i35[0], i76[0])≥NonInfC∧LOAD875(i12[0], i35[0], i76[0])≥COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])∧(UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥))
(2) (>(+(i76[0], 1), 0)=TRUE∧<(i12[0], i35[0])=TRUE∧>=(i76[0], 0)=TRUE∧>=(i12[0], i76[0])=TRUE ⇒ LOAD875(i12[0], i35[0], i76[0])≥NonInfC∧LOAD875(i12[0], i35[0], i76[0])≥COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])∧(UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥))
(3) (i76[0] ≥ 0∧i35[0] + [-1] + [-1]i12[0] ≥ 0∧i76[0] ≥ 0∧i12[0] + [-1]i76[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i76[0] + [(2)bni_13]i35[0] + [(-1)bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (i76[0] ≥ 0∧i35[0] + [-1] + [-1]i12[0] ≥ 0∧i76[0] ≥ 0∧i12[0] + [-1]i76[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i76[0] + [(2)bni_13]i35[0] + [(-1)bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (i76[0] ≥ 0∧i35[0] + [-1] + [-1]i12[0] ≥ 0∧i76[0] ≥ 0∧i12[0] + [-1]i76[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i76[0] + [(2)bni_13]i35[0] + [(-1)bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (i76[0] ≥ 0∧i35[0] ≥ 0∧i76[0] ≥ 0∧i12[0] + [-1]i76[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥)∧[(4)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i76[0] + [bni_13]i12[0] + [(2)bni_13]i35[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (i76[0] ≥ 0∧i35[0] ≥ 0∧i76[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])), ≥)∧[(4)bni_13 + (-1)Bound*bni_13] + [bni_13]i12[0] + [(2)bni_13]i35[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (COND_LOAD875(TRUE, i12[1], i35[1], i76[1])≥NonInfC∧COND_LOAD875(TRUE, i12[1], i35[1], i76[1])≥LOAD875(i12[1], i35[1], +(i76[1], 1))∧(UIncreasing(LOAD875(i12[1], i35[1], +(i76[1], 1))), ≥))
(9) ((UIncreasing(LOAD875(i12[1], i35[1], +(i76[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(10) ((UIncreasing(LOAD875(i12[1], i35[1], +(i76[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(11) ((UIncreasing(LOAD875(i12[1], i35[1], +(i76[1], 1))), ≥)∧[1 + (-1)bso_16] ≥ 0)
(12) ((UIncreasing(LOAD875(i12[1], i35[1], +(i76[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(13) (i35[2]=i35[3]∧&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0))=TRUE∧i76[2]=i76[3]∧i12[2]=i12[3] ⇒ LOAD875(i12[2], i35[2], i76[2])≥NonInfC∧LOAD875(i12[2], i35[2], i76[2])≥COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])∧(UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥))
(14) (>(+(i12[2], 1), 0)=TRUE∧<(i12[2], i35[2])=TRUE∧>=(i12[2], 0)=TRUE∧<(i12[2], i76[2])=TRUE ⇒ LOAD875(i12[2], i35[2], i76[2])≥NonInfC∧LOAD875(i12[2], i35[2], i76[2])≥COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])∧(UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥))
(15) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i76[2] + [(2)bni_17]i35[2] + [(-1)bni_17]i12[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(16) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i76[2] + [(2)bni_17]i35[2] + [(-1)bni_17]i12[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(17) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i76[2] + [(2)bni_17]i35[2] + [(-1)bni_17]i12[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(18) (i12[2] ≥ 0∧i35[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(4)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i76[2] + [bni_17]i12[2] + [(2)bni_17]i35[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(19) (i12[2] ≥ 0∧i35[2] ≥ 0∧i12[2] ≥ 0∧i76[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i76[2] + [(2)bni_17]i35[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(20) (COND_LOAD8751(TRUE, i12[3], i35[3], i76[3])≥NonInfC∧COND_LOAD8751(TRUE, i12[3], i35[3], i76[3])≥LOAD875(+(i12[3], 1), i35[3], i76[3])∧(UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥))
(21) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(22) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(23) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(24) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD875(x1, x2, x3)) = [2] + [-1]x3 + [2]x2 + [-1]x1
POL(COND_LOAD875(x1, x2, x3, x4)) = [2] + [-1]x4 + [2]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_LOAD8751(x1, x2, x3, x4)) = [2] + [-1]x4 + [2]x3 + [-1]x2
COND_LOAD875(TRUE, i12[1], i35[1], i76[1]) → LOAD875(i12[1], i35[1], +(i76[1], 1))
COND_LOAD8751(TRUE, i12[3], i35[3], i76[3]) → LOAD875(+(i12[3], 1), i35[3], i76[3])
LOAD875(i12[0], i35[0], i76[0]) → COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])
LOAD875(i12[0], i35[0], i76[0]) → COND_LOAD875(&&(&&(&&(>=(i76[0], 0), >=(i12[0], i76[0])), <(i12[0], i35[0])), >(+(i76[0], 1), 0)), i12[0], i35[0], i76[0])
LOAD875(i12[2], i35[2], i76[2]) → COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (2), if ((i12[1] →* i12[2])∧(i35[1] →* i35[2])∧(i76[1] + 1 →* i76[2]))
(3) -> (2), if ((i35[3] →* i35[2])∧(i76[3] →* i76[2])∧(i12[3] + 1 →* i12[2]))
(2) -> (3), if ((i35[2] →* i35[3])∧(i12[2] >= 0 && i12[2] < i76[2] && i12[2] < i35[2] && i12[2] + 1 > 0 →* TRUE)∧(i76[2] →* i76[3])∧(i12[2] →* i12[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i35[3] →* i35[2])∧(i76[3] →* i76[2])∧(i12[3] + 1 →* i12[2]))
(2) -> (3), if ((i35[2] →* i35[3])∧(i12[2] >= 0 && i12[2] < i76[2] && i12[2] < i35[2] && i12[2] + 1 > 0 →* TRUE)∧(i76[2] →* i76[3])∧(i12[2] →* i12[3]))
(1) (COND_LOAD8751(TRUE, i12[3], i35[3], i76[3])≥NonInfC∧COND_LOAD8751(TRUE, i12[3], i35[3], i76[3])≥LOAD875(+(i12[3], 1), i35[3], i76[3])∧(UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥))
(2) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[(-1)bso_13] ≥ 0)
(3) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[(-1)bso_13] ≥ 0)
(4) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧[(-1)bso_13] ≥ 0)
(5) ((UIncreasing(LOAD875(+(i12[3], 1), i35[3], i76[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_13] ≥ 0)
(6) (i35[2]=i35[3]∧&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0))=TRUE∧i76[2]=i76[3]∧i12[2]=i12[3] ⇒ LOAD875(i12[2], i35[2], i76[2])≥NonInfC∧LOAD875(i12[2], i35[2], i76[2])≥COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])∧(UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥))
(7) (>(+(i12[2], 1), 0)=TRUE∧<(i12[2], i35[2])=TRUE∧>=(i12[2], 0)=TRUE∧<(i12[2], i76[2])=TRUE ⇒ LOAD875(i12[2], i35[2], i76[2])≥NonInfC∧LOAD875(i12[2], i35[2], i76[2])≥COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])∧(UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥))
(8) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]i12[2] + [bni_14]i76[2] + [(2)bni_14]i35[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(9) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]i12[2] + [bni_14]i76[2] + [(2)bni_14]i35[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(10) (i12[2] ≥ 0∧i35[2] + [-1] + [-1]i12[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]i12[2] + [bni_14]i76[2] + [(2)bni_14]i35[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(11) (i12[2] ≥ 0∧i35[2] ≥ 0∧i12[2] ≥ 0∧i76[2] + [-1] + [-1]i12[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(-1)Bound*bni_14 + (2)bni_14] + [bni_14]i12[2] + [bni_14]i76[2] + [(2)bni_14]i35[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (i12[2] ≥ 0∧i35[2] ≥ 0∧i12[2] ≥ 0∧i76[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])), ≥)∧[(-1)Bound*bni_14 + (3)bni_14] + [(2)bni_14]i12[2] + [bni_14]i76[2] + [(2)bni_14]i35[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD8751(x1, x2, x3, x4)) = [-1] + x4 + [2]x3 + [-1]x2
POL(LOAD875(x1, x2, x3)) = [-1]x1 + x3 + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
LOAD875(i12[2], i35[2], i76[2]) → COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])
LOAD875(i12[2], i35[2], i76[2]) → COND_LOAD8751(&&(&&(&&(>=(i12[2], 0), <(i12[2], i76[2])), <(i12[2], i35[2])), >(+(i12[2], 1), 0)), i12[2], i35[2], i76[2])
COND_LOAD8751(TRUE, i12[3], i35[3], i76[3]) → LOAD875(+(i12[3], 1), i35[3], i76[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer